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A CsOH-promoted aerobic oxidation of sec-aromatic alcohols has been developed, using air as a free and
clean oxidant, and providing aryl ketones in good to excellent yields.

� 2008 Published by Elsevier Ltd.
Table 1
Screen of the base in aerobic oxidation of carbinola

OH

O base, sol ., air

O

O

The oxidation of sec-alcohols into ketones is one of the most
important functional group transformation reactions in organic
chemistry. In the past decades, much attention has been paid to
develop efficient methods for this transformation.1 Many stoichi-
ometric oxidants, such as chromium(VI) and manganese reagents,
were employed.2 Considering environmental and economic
demands, developing relative clean and efficient methods has been
a highly desired goal in organic synthesis. Molecular oxygen usu-
ally plays an important role in the oxidation reaction.3 Lately,
many examples of using copper,4 palladium5 and ruthenium6 cat-
alysts for such kind of oxidation reactions using molecular oxygen
or air have been reported. Very recently, the efficient non-equiva-
lent for activation of molecular oxygen and its application in aero-
bic alcohol oxidation described by Hu is of great interest due to the
obviation of transition metal.7
O O

Entry Base Equiv Solvent Yieldb (%)

1 KOH 0.4 Toluene 84
2 KOH 0.2 Toluene 26
3b CsOH 0.2 Toluene 82
O

HAr
+ Ar'B(OH)2

OH

Ar'Ar

PdCl2, P(1-nap)3

K2CO3 (3 equiv)

O

HAr
+ Ar'B(OH)2

O

Ar'Ar

Pd2(dba)3,  P(1-nap)3
Cs2CO3 (3 equiv)

ð1Þ
4 NaOH 0.2 Toluene 77
5 CsF 0.2 Toluene <5
6 K2CO3 0.2 Toluene <5
7 Cs2CO3 0.2 Toluene <5
7 K3PO4�3H2O 0.2 Toluene <5
8 CsOH 0.2 THF 10
9 CsOH 0.2 CH3CN 11

10 CsOH 0.2 Dioxane <5
11 CsOH 0.2 EtOH <5
In our previous work, we found that the combination of K2CO3,
PdCl2 and P(1-nap)3 in THF could efficiently catalyze the reaction
of aryl aldehydes with aryl boronic acids, providing the carbinol
derivatives in good yield. During the researching process, we found
that aryl ketones were formed. Interestingly, the employment of
Cs2CO3 instead of K2CO3 provides the aryl ketones in moderate to
good yields under air (Eq. 1).8 The desired products were at least
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partly oxidized from the corresponding secondary alcohol, which
was formed in situ by the addition of organoboronic acids to alde-
hydes. Herein, we wish to explore the feasibility of catalytic
amount of base-promoted aerobic oxidation of sec-aryl alcohol.

Initially, we studied the aerobic oxidation of benzo[d][1,3]diox-
ol-5-yl(phenyl)methanol in the presence of a series of bases in the
common organic solvents. The results are summarized in Table 1.
At first, weak bases such as CsF, K2CO3 and Cs2CO3 were tested in
the transformation. Much to our disappointment, these weak bases
a All reactions were run under air in the presence of indicated amounts of base in
indicated solvents under refluxing for 24 h.

b Isolated yield.
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Figure 2. Plausible mechanism.
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were totally ineffective. So we employed several strong bases to
test the activity. In the presence of 0.4 equiv KOH, 84% of the prod-
uct was isolated. However, the yield dramatically decreased to 26%
in the presence of 0.2 equiv of KOH. Surprisingly, 82% and 77%
products were formed in the presence of 0.2 equiv of CsOH and
NaOH, respectively. Solvents also played important roles in the oxi-
dation reaction. Among the tested common organic solvents, tolu-
ene was the best. At last, the optimal reaction condition was to use
0.2 equiv of CsOH in toluene under air.

With the optimized reaction conditions in hand, a series of sub-
strates were subjected to broaden the substrates scope (Fig. 1). The
electronic effect of the substitution groups on the aryl ring was not
obvious in the reaction. The carbinol derivatives possessing both
electron-withdrawing groups and electron-donating groups ran
smoothly, and provided corresponding aryl ketones in good to
excellent yields. The hindrance in the ortho-position of the aryl
group had little effects on the yield such as 2j and 2k were isolated
in 97% and 82% yields, respectively. The hetero-carbinol derivatives
such as 1m, 1n, 1o were also good substrates in the reaction.
1-(Naphthalen-1-yl)ethanol 1p and 1-(p-phenyl)phenylethanol
1q also ran smoothly, and the products were isolated in moderate
yields. Interestingly, 1l could proceed smoothly to deliver the
product 2l in 70% isolated yield. 2-Hydroxy-1,2-di-tolylethanone
was also a good reaction partner and 2r was formed in 74% yield.
However, alkyl alcohols, such as cyclohexanol did not work under
this condition. The reaction could run under N2, and 84% yield of
benzophenone was isolated in the presence of 1.0 equiv of CsOH.
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Figure 1. Cesium hydroxide-promoted aerobic oxidation of sec-aromatic alcohols.
Reagents and conditions: carbinol (0.5 mmol), CsOH (15 mg, 0.1 mmol), toulene
(3 mL), under air at 110 �C for 24 h. Isolated yield.
A plausible mechanism was proposed, as shown in Figure 2.
The catalytic cycle might contain three steps: (1) carbinol could

undergo deprotonation to form intermediate A; (2) intermediate A
could extrude a H� to form the oxidation product;9 (3) the formed
H� either could react with O2 to form OH� or could undergo direct
hydrolysis to form OH� and 2 mol of atomic hydrogens, which
could react with O2 to form H2O. A radical pathway could not be
ruled out either.

In conclusion, a CsOH-promoted aerobic oxidation of sec-
aromatic alcohols has been developed, providing corresponding
ketones in good to excellent yields. Both the use of air as a free
and environment-friendly oxidant and the obviation of transi-
tion-metal catalyst all consist of the charming characters in this
procedure.10
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